Neon EVM Composability:

A Unified Framework for Ethereum—Solana
Interaction

White Paper

Miroslav Nedelchev!, Grzegorz Gancarczyk’

Reviewed by:
Oleg Sukharev®, Andrey Falaleev®

! Authors (miroslav.nedelchev@neonfoundation.io, grzegorz.gancarczyk@neonfoundation.io)

2Reviewers (os@neonfoundation.io, a@neonfoundation.io)

April 11, 2025

mailto:miroslav.nedelchev@neonfoundation.io
mailto:grzegorz.gancarczyk@neonfoundation.io
mailto:os@neonfoundation.io
mailto:a@neonfoundation.io

Abstract

This white paper introduces the composability functionality within Neon EVM, a feature
that enables EVM-based smart contracts to directly interact with Solana blockchain pro-
grams. By combining Ethereum’s developer tools and execution environment with Solana’s
processing capabilities, Neon EVM provides a framework for interoperable dApp develop-
ment across both blockchains.

We address specific technical considerations crucial to Ethereum—Solana interoperabil-
ity, including account ownership discrepancies, bridging ERC-20-compatible (SPL-wrapped)
tokens, transaction atomicity, and revert semantics. Additionally, we outline the compos-
ability architecture, security and validation mechanisms, instruction preparation guidelines,
program-derived address (PDA) usage, associated token account (ATA) management, and
specialized payer account models required for Solana account creation and rent exemption.

The technical explanations provided herein are intended to offer developers and blockchain
stakeholders a thorough understanding of Neon EVM’s composability mechanism, facilitat-
ing integration between Ethereum—compatible smart contracts and native Solana function-
alities.

Contents

1 Introduction

2 Executive summary
2.1 Overview of composability

2.2 Composability technical approach .

3 Composability overview
3.1 Definition and motivation

3.2 High-level architecture

3.3 Support for Arbitrary Solana Programs L.

4 Composability execution model
4.1 Conceptual overview
4.2 Execution workflow

4.3 Token bridging via ERC20ForSPL

4.4 Compute unit considerations and instruction preparation

4.5 Atomicity, error handling, and simulation considerations

5 Technical details
5.1 Neon EVM program architecture .

5.2 Precompile extensions for Solana calls

5.3 Program Derived Addresses (PDAs) and ERC20ForSPL token management . . .

5.4 Payer account for SOL provisioning

and instruction signing

5.5 Detailed composability execution and internal transaction handling

5.6 Neon proxy and emulation layer . .
5.7 Gas and compute budget

5.8 Security and validation mechanisms

6 Conclusion

ii

10

11
11
12

14
15
16
18
19

22

1 Introduction

The composability mechanism provides interoperability, allowing Ethereum-based smart con-
tracts to directly invoke and interact with programs native to Solana. By abstracting away
complexities inherent to cross-chain interactions—such as divergent account models, token stan-
dards, transaction semantics, and revert mechanisms—Neon EVM offers developers a unified
execution environment. This environment enforces transaction atomicity and manages accounts
without additional developer intervention.

This white paper presents an in-depth technical description of Neon EVM composability. We
outline its architectural design, security considerations, operational guidelines, account man-
agement strategies, and recommended practices for instruction preparation. The objective is
to equip blockchain developers, architects, and stakeholders with knowledge enabling them to
leverage Neon EVM’s unified composability solution effectively.

2 Executive summary

2.1 Overview of composability

Composability in Neon EVM is an interoperability mechanism enabling Ethereum Virtual Ma-
chine (EVM)-based smart contracts to invoke and integrate with native programs on the Solana
blockchain. It provides Solidity-based contracts with direct access to Solana’s functionality, ex-
tending Ethereum’s development paradigms into Solana’s execution environment.

The primary features of Neon EVM composability include:

e Direct cross-chain calls: Solidity contracts within Neon EVM can invoke Solana pro-
gram instructions to perform token bridging (SPL-to-ERC20 compatibility) and other
operations.

e Atomic transaction semantics: Neon EVM ensures strict atomicity of cross-platform
transactions. Solana instructions invoked via composability either execute completely or
revert fully, thereby preventing partial state transitions. This transactional atomicity
simplifies smart contract logic and enhances reliability in cross-chain interactions.

¢ Internal management of multi-step transactions: The composability mechanism in-
ternally manages scenarios involving complex or multi-phase transaction flows, accommo-
dating Solana’s transaction-size and compute-unit constraints. Developers interact with
composability through familiar Ethereum-based workflows, without explicit management
of underlying Solana-specific execution details.

e Account and state management abstractions: Composability incorporates manage-
ment of program-derived addresses (PDAs), associated token accounts (ATAs), and spe-
cialized payer accounts. These mechanisms facilitate token custody, rent-exempt account
provisioning, and secure instruction signing, respectively, ensuring Ethereum-to-Solana
state transitions and secure cross-platform interactions.

2.2 Composability technical approach

Neon EVM composability facilitates cross-platform interactions between Ethereum-compatible
smart contracts and native Solana programs through an approach that abstracts away inherent
complexities. This interoperability is implemented using several critical components and design
considerations:

e Precompile extensions: A dedicated precompile contract (at address 0xFF00000000
0000000000000006)) provides a standardized Solidity interface for interacting with Solana.
Developers prepare Solana instruction data within their Solidity code and pass it to this
precompile. The precompile then requests the execution of this instruction on Solana,
handling aspects like account resolution and atomicity enforcement.

e Token interoperability via ERC20ForSPL: The ERC20ForSPL interface serves as an
Ethereum-compatible abstraction for managing SPL tokens. Unlike traditional Ethereum
token standards, ERC20ForSPL does not maintain state within Solidity contract storage.
Instead, it directly operates on state within Solana’s program-derived accounts (PDAs)
and associated token accounts (ATAs). Token transfers, balances, and approvals are
handled through Solana-native account modifications, ensuring efficiency and consistency
across platforms.

e Account and signer management: Program-derived addresses (PDAs) are determin-
istically generated accounts exclusively managed by the Neon EVM program, ensuring
secure ownership and control of token and data accounts on Solana. For SOL provision-
ing (required for Solana account creation and rent exemption), Neon EVM introduces
dedicated payer accounts uniquely associated with each Ethereum msg.sender. When a
developer passes a Solana instruction requiring SOL (e.g., for account initialization) to
the composability precompile, the necessary SOL is provisioned via this associated payer
account during the transaction execution. These payer accounts also function as signers
for Solana instructions requiring explicit authorization, providing secure account creation
and instruction signing capability.

¢ Execution and resource management: Composability transactions maintain atomic
execution semantics across Ethereum—Solana interactions, internally handling complexi-
ties such as transaction-size limits, compute-unit constraints, and conditional state up-
dates without developer intervention. By managing resource allocation and transaction
validation internally, Neon EVM provides consistent transaction outcomes and prevents
partial state modifications.

e Validation and security framework: A validation protocol verifies account ownership,
instruction legitimacy, and operator account isolation. These validation steps mitigate
security risks, unauthorized account access, and improper state changes. By isolating
operator accounts and carefully managing transaction execution contexts, Neon EVM
composability ensures robust security across all cross-chain interactions.

3 Composability overview

3.1 Definition and motivation

Composability within Neon EVM refers to the technical capability enabling Ethereum Virtual
Machine (EVM)-compatible smart contracts deployed on Neon EVM to directly invoke and
manage interactions with native programs on the Solana blockchain. This interoperability layer
allows Solidity-based contracts to access Solana-specific features, functionality, and on-chain
programs without departing from the Ethereum development environment or requiring separate
integration efforts.

The motivation for composability arises from distinct technical strengths present within the
Ethereum and Solana ecosystems. Ethereum offers extensive smart contract tooling, a mature
developer experience, and a widely adopted application ecosystem. In contrast, Solana provides
parallel execution, low latency, high transaction throughput, and resource-efficient computation.
However, historically these blockchain ecosystems have operated independently, with friction in
integrating functionality across platforms.

By implementing composability, Neon EVM addresses these integration challenges, providing
developers a mechanism to extend Solidity smart contract capabilities into the Solana execution
environment. Key interoperability issues addressed through composability include:

e Account ownership models: Ethereum’s contract-storage approach significantly differs
from Solana’s account-based data storage model. Composability abstracts away these
differences by internally managing interactions via deterministic Solana accounts, such as
program-derived addresses (PDAs) and associated token accounts (ATAs).

e Token standard compatibility: ERC20-compatible SPL-wrapped tokens are managed
through composability, providing Solidity developers with a familiar token interface with-
out explicit handling of Solana-native token accounts.

e Atomic transaction semantics: Composability ensures transactions spanning Ethereum
contracts and Solana instructions remain atomic. Operations executed on Solana either
complete entirely or revert fully, maintaining consistent transaction states across both
blockchain environments.

e Transaction execution management: Neon EVM internally manages transaction com-
plexities such as Solana’s compute-unit constraints and instruction data limits. This
abstraction simplifies developer workflows and ensures predictable outcomes for cross-
platform transactions.

3.2 High-level architecture

The Neon EVM composability feature is architected to facilitate interactions between Ethereum
Virtual Machine (EVM)-compatible smart contracts and native Solana programs. Its archi-
tecture integrates Ethereum’s execution environment with Solana’s blockchain infrastructure
through several coordinated components:

e Neon EVM program: Deployed directly onto the Solana blockchain, the Neon EVM
program serves as the runtime environment for executing Ethereum-compatible bytecode.
It interprets EVM transactions, manages contract storage, and securely handles state tran-
sitions, integrating with native Solana programs and account management mechanisms.

e Precompile contract interfaces: Specialized precompiled contracts extend standard
EVM execution, handling Solidity calls to invoke Solana-compatible instructions. These
precompiles abstract complex account operations, instruction encoding, token transfers,
and state synchronization between the EVM and Solana, providing developers with stan-
dardized interfaces for Solana interoperability.

e Account and token management layer: Neon EVM composability utilizes determin-
istic program-derived addresses (PDAs), associated token accounts (ATAs), and payer ac-
counts to securely manage tokens, account creation, rent exemption, and required signer
authorization on Solana. This structured management ensures secure, predictable han-
dling of assets and account states across platforms.

e Neon proxy and emulation service: A client-side proxy component prepares Solana
transactions based on Ethereum-compatible transactions. This layer handles account
discovery, transaction emulation, validation of execution constraints (such as compute-
unit budgets and instruction data sizing), and transaction packaging, thereby ensuring
consistent execution and predictable results.

e Security and transaction validation: Neon EVM employs validation protocols to
ensure the integrity and correctness of cross-chain interactions. This includes verifying
account permissions, transaction signatures, and enforcing secure isolation between op-
erators, Ethereum-based contracts, and Solana accounts, effectively mitigating potential
cross-chain execution risks.

3.3 Support for Arbitrary Solana Programs

Neon EVM composability provides support for interactions with arbitrary Solana programs.
While initial implementations focused primarily on widely used, standard Solana programs,
the composability framework is designed to accommodate generalized invocation of any Solana
program implemented using the Berkeley Packet Filter (BPF).

To facilitate interactions with custom or third-party Solana programs, Neon EVM leverages
precompiled contract interfaces. Developers specify essential parameters such as the Solana
program ID, required accounts, and instruction-specific data within Solidity contracts. The
Neon EVM program translates these Solidity instructions into correctly formatted Solana in-
structions at runtime, ensuring execution on the Solana blockchain.

Key capabilities enabling support for arbitrary programs include:

e Dynamic account discovery and preparation: Neon EVM identifies and prepares the
necessary Solana accounts based on the contract-specified program interactions, managing
permissions and ownership through program-derived addresses (PDAs) and associated
token accounts (ATAs).

e Flexible instruction encoding: Developers define instruction data and parameters
directly within Solidity contract calls, which Neon EVM dynamically encodes into appro-
priate Solana instruction formats at execution time. This flexibility ensures compatibility
with diverse Solana program interfaces, regardless of complexity.

e Automatic instruction execution and atomicity: Composability ensures instruc-
tions targeting arbitrary Solana programs execute atomically within the context of the
originating Ethereum transaction. This design guarantees that the Solana instructions
either succeed completely or revert entirely, preserving the integrity and consistency of

cross-platform state transitions. For example, if a single transaction contains multiple
composability calls (invoking Solana instructions 1, 2, and 3 sequentially), and instruc-
tion 3 fails during Solana execution after 1 and 2 have successfully completed, the *entire*
transaction reverts. This includes rolling back the effects of the successful Solana instruc-
tions (1 and 2) as well as any state changes made by the Solidity contract logic executed
prior to the failing instruction 3.

Secure authorization and signing: Neon EVM manages secure instruction authoriza-
tion using dedicated payer accounts associated with Solidity contracts, fulfilling Solana’s
signer requirements without exposing private keys or requiring manual intervention.

4 Composability execution model

4.1 Conceptual overview

Neon EVM composability manages the execution of Ethereum-compatible smart contracts that
invoke Solana-native program instructions. From the perspective of Solidity developers, interac-
tions with Solana programs appear consistent with familiar Ethereum execution semantics. In-
ternally, Neon EVM handles encoding, preparation, execution, and validation of cross-platform
instructions. Note that while regular Solidity logic is translated into corresponding Solana oper-
ations, the composability feature requires Solidity contracts to prepare Solana instruction data
that is processed natively on Solana.

The composability mechanism operates with strict atomic transaction semantics. Each Ethereum-
to-Solana transaction initiated by a Solidity contract executes as a single atomic entity, meaning
all embedded Solana instructions either fully succeed or revert entirely. This approach ensures
state integrity and eliminates the need for developers to explicitly handle partial or intermediate
states.

Internally, Neon EVM employs a carefully orchestrated process to execute cross-platform inter-
actions:

e Transaction preparation and account resolution: The Neon proxy dynamically
identifies required Solana accounts, determines necessary instruction data, and encodes
transaction details based on the Ethereum transaction submitted by users or smart con-
tracts.

e Dynamic instruction execution: Neon EVM securely executes Solana-compatible in-
structions based on the actions defined in Solidity. It manages the execution context,
ensuring that instruction data, account permissions, token balances, and computational
resources align with Solana’s operational constraints and account structures.

e Internal resource management: Neon EVM handles resource allocation, including
compute-unit budgets and transaction data-size constraints inherent to Solana’s blockchain
environment. This internal management ensures consistent transaction outcomes without
requiring explicit developer awareness or management.

e State finalization and atomicity enforcement: Upon execution completion, Neon
EVM ensures atomic state transitions. Transactions either commit fully to the blockchain
state or revert completely, preserving cross-chain consistency and simplifying contract-
level logic.

4.2 Execution workflow

Neon EVM composability execution workflow provides a structured process enabling Ethereum-
compatible smart contracts to invoke and execute Solana-native instructions. This workflow
manages complexities involved in cross-chain instruction translation, validation, and execution,
ensuring consistent outcomes. The general composability execution workflow involves the fol-
lowing technical steps:

1. Solidity transaction initiation: A Solidity smart contract or externally-owned account
(EOA) initiates an Ethereum-compatible transaction intended to interact with a Solana
program. The transaction may include specific instruction parameters, token operations,
and account management details defined within the Solidity contract.

2. Neon proxy account preparation and validation: The Neon proxy dynamically
analyzes and emulates the Solidity transaction to identify all required Solana accounts
(including PDAs and associated token accounts), necessary token balances, and compute-
unit requirements. The proxy assembles this information into a properly formatted Solana
transaction.

3. Transaction encoding and Solana instruction generation: Solidity-defined oper-
ations are translated into Solana-compatible instructions through precompiled contract
interfaces. This includes encoding necessary program IDs, account addresses, instruction-
specific data, and managing signer permissions. Token transfers and account initialization
requests are prepared according to Solana’s account model requirements, ensuring the
transaction meets Solana’s runtime constraints.

4. Atomic instruction execution: Neon EVM securely executes the encoded Solana in-
structions as an atomic transaction. All included instructions either succeed in entirety or
revert as a complete unit, maintaining consistent state across Ethereum and Solana exe-
cution contexts. Developers receive transaction receipts indicating final outcomes, aligned
with standard Ethereum transaction receipt formats.

5. Resource and state finalization: Upon successful execution, Neon EVM commits
state transitions to Solana blockchain accounts, securely updating token balances, account
ownership, and any associated data. Unused computational resources and unused SOL
(provided initially through the payer accounts) are automatically returned to the Neon
EVM operator, optimizing resource usage efficiency.

6. Transaction outcome reporting: Transaction results, including event logs and state
changes, are reported back to the originating Ethereum-compatible environment. Solidity
smart contracts or user interfaces can process these results through standard Ethereum
transaction receipts, maintaining a familiar development workflow.

4.3 Token bridging via ERC20ForSPL

Neon EVM facilitates interoperability with Solana tokens through the ERC20ForSPL interface,
a Solidity-compatible token abstraction that enables management and transfer of SPL-standard
tokens within Ethereum-compatible smart contracts. Unlike conventional Ethereum token stan-
dards such as ERC20, ERC20ForSPL’s primary distinction is that it does not maintain token
balances within Solidity contract storage; these are read directly from the underlying Solana
accounts. However, it does manage standard Ethereum allowances within Solidity storage using
the familiar approve method. Solana-specific allowances are handled separately via a distinct
approveSolana function, which operates directly on Solana state. Consequently, core opera-
tions like balance checks and transfers primarily manipulate token state stored within Solana
blockchain accounts.

Key technical attributes of ERC20ForSPL bridging include:

e Direct Solana token account manipulation: Token balances, transfers, approvals,
and other token operations performed through ERC20ForSPL translate directly into
modifications of Solana-associated token accounts (ATAs) and program-derived addresses
(PDAs). This approach leverages Solana’s native account management, providing accu-
rate, real-time token state without redundant or intermediate storage in Ethereum-style
contracts.

e Solidity-compatible token interface: ERC20ForSPL exposes an ERC-20-compatible
Solidity interface, allowing Ethereum-based smart contracts and user interfaces to interact
with SPL tokens using familiar function signatures such as transfer (address,uint256),
transferFrom(address,address,uint256), and balance0f (address). Underlying Solana
account operations remain entirely abstracted from the Solidity developer’s perspective.

¢ Efficient token account handling: Tokens initially held within Neon EVM-managed
PDAs may require transfer to contract-controlled ATAs to facilitate certain composability
operations. Advances in ERC20ForSPL implementations continue to simplify these token
transfer and custody requirements, reducing overhead and improving the efficiency of
token bridging processes.

e Atomicity and security: ERC20ForSPL token operations executed through Neon EVM
composability inherit strict atomic execution semantics. Token transfers and interactions
with Solana programs occur within atomic transactions, either completing entirely or
reverting fully, thereby ensuring secure and predictable token state transitions.

Through this token-bridging mechanism, Neon EVM composability effectively unifies Ethereum-
compatible smart contracts with Solana’s native token standards, providing developers access to
the token ecosystems of both blockchains within a consistent, Ethereum-compatible development
environment.

4.4 Compute unit considerations and instruction preparation

Composability in Neon EVM leverages Solana’s atomic transaction model, executing multiple
instructions within a single, indivisible transaction. To maximize the effectiveness of compos-
ability calls and ensure predictable transaction outcomes, the following best practices should
be observed during instruction preparation and execution:

1. While not a strict requirement, it is highly recommended as a best practice to perform
as much Solidity logic and instruction data generation as possible *before* initiating the
first composability request within a transaction. This approach optimizes resource usage
by streamlining execution and reducing the computational overhead consumed during the
atomic on-chain interaction phases. Conversely, executing significant Solidity logic *be-
tween* consecutive composability calls consumes part of the transaction’s overall compute
budget, increasing the likelihood of reaching Solana’s Compute Unit (CU) limit prema-
turely.

2. Minimize intermediate Solidity logic between consecutive composability calls. By doing
so, developers can significantly optimize the available computational resources, resulting
in more reliable transaction execution.

3. In scenarios involving sequential composability instructions, where the outcome of an ear-
lier instruction serves as input for a subsequent instruction (e.g., Instruction #1: swapping
Token A for Token B, followed by Instruction #2: depositing Token B into a lending pro-
tocol), the recommended approach is:

e Fully prepare instruction calldata and account metadata for the first instruction
(#1).

e For dependent instructions (#2 onwards), predefine only the required Solana program
IDs and account metadata, leaving the instruction calldata open or placeholder.

e After the initial composability instruction successfully executes, dynamically retrieve
the resulting state (e.g., token balances) within the same atomic transaction execu-
tion flow and finalize the calldata for the subsequent instruction accordingly. This
approach ensures accuracy and optimal resource utilization within the atomic con-
text.

4.5 Atomicity, error handling, and simulation considerations

Composability transactions within Neon EVM maintain strict atomic execution semantics, en-
suring that all invoked Solana instructions execute completely or revert entirely, without inter-
mediate state transitions. This atomicity simplifies smart contract logic, as partial execution
results do not require explicit handling by developers.

Several considerations related to atomicity, error handling, and simulation are important for
efficient composability implementation:

e Atomic execution model: Transactions invoking Solana programs through compos-
ability adhere strictly to atomic transaction rules. Should any Solana instruction within
a composability transaction fail-—such as due to unmet logical conditions in decentralized
exchange interactions (e.g., insufficient slippage tolerance)—the entire transaction reverts.
Developers can rely on predictable transaction outcomes, simplifying error handling at the
contract level.

e Simulation and state prediction: Pre-transaction simulations or off-chain emulations
(e.g., via eth_estimateGas or Neon Proxy emulation) can detect certain errors, such
as incorrect instruction formatting or missing Solana account data. Transactions failing
these pre-execution validations will not proceed to broadcasting. However, exact state
changes—such as precise token reserve outcomes in dynamic market conditions—cannot
be guaranteed via simulations, as actual on-chain state might vary between simulation
and execution due to concurrent blockchain transactions.

e Optimizing for simplicity and predictability: Composability excels particularly in
straightforward interactions such as token swaps, token minting, and single-operation
deposits. Developers managing complex transaction sequences or multi-step conditional
interactions should follow recommended best practices, preparing instruction data dy-
namically based on real-time on-chain outcomes for accurate and efficient execution, as
described in the previous section.

10

5 Technical details

This section offers an in-depth look at the internal mechanisms, data structures, and workflows
that enable Composability in Neon EVM. Building on the high-level overviews, we focus here
on how Neon EVM manages Solana accounts, executes precompile functions, and preserves
security and atomicity.

5.1 Neon EVM program architecture

The Neon EVM is implemented as a native Solana on-chain program, architecturally designed
to facilitate the execution of Ethereum Virtual Machine (EVM)-compatible smart contracts
directly within Solana’s blockchain environment. It serves as the primary runtime environment
for Solidity-based contracts, managing transaction validation, EVM bytecode interpretation,
storage management, and integration with native Solana accounts and instructions.

The core components and operational logic of the Neon EVM architecture include:

e EVM execution engine: At the heart of Neon EVM is an Ethereum Virtual Machine
interpreter implemented directly on Solana. It supports standard Ethereum opcodes,
enabling execution of compiled Solidity contracts. This execution engine manages the
contract lifecycle, maintains EVM state transitions, and executes bytecode instructions
according to Ethereum specifications, ensuring compatibility and outcomes consistent with
Ethereum behavior.

e Solana-native account integration: Neon EVM uses Solana’s native account model
extensively. Contract state, balances, code storage, and transaction metadata are stored
in Solana accounts. To securely isolate Ethereum state, Neon EVM manages program-
derived addresses (PDAs) deterministically generated from contract addresses and prede-
fined seeds. Each PDA is exclusively managed by Neon EVM, guaranteeing secure and
deterministic storage of EVM state within the Solana environment.

e Composability precompile interfaces: Neon EVM integrates specialized precompiled
contracts to translate Solidity instructions into Solana-compatible operations. These pre-
compiles handle complex interactions—such as token transfers, account creations, and
external Solana program invocations—by dynamically preparing and executing Solana
instructions at runtime, simplifying Ethereum-to-Solana cross-platform communication.

e Account creation and rent-exemption management: Neon EVM manages Solana
account creation requirements, automatically allocating SOL via dedicated payer accounts
to achieve rent exemption for newly created accounts. Unused SOL allocations are au-
tomatically returned upon transaction completion, ensuring efficient resource utilization
without requiring explicit developer management.

e Resource and compute unit allocation: Neon EVM internally manages computa-
tional resources, adhering to Solana’s compute-unit limits and transaction size constraints.
It dynamically estimates computational requirements for Solidity transactions executed
as Solana instructions, ensuring that transactions either succeed within these constraints
or revert predictably, thereby simplifying transaction reliability and consistency.

e Neon proxy integration and transaction emulation: A specialized Neon proxy layer
off-chain emulates transaction execution prior to broadcasting, performing pre-validation
of computational resource usage, account availability, instruction format correctness, and

11

account permissions. This emulation step provides early detection of transaction issues,
improving reliability and reducing on-chain execution errors.

e Secure state isolation and validation mechanisms: The Neon EVM architecture em-
ploys account isolation, validation checks, and permission management to protect contract
execution integrity. All transaction inputs, account interactions, and state transitions are
explicitly validated and isolated, mitigating unauthorized access and ensuring secure, pre-
dictable state updates.

5.2 Precompile extensions for Solana calls

Neon EVM provides specialized precompiled contracts designed explicitly to facilitate direct
Solidity-to-Solana interactions, handling cross-platform communication. These precompile con-
tracts function as built-in extensions to the standard EVM instruction set, automatically encod-
ing Solidity method invocations into the corresponding Solana-compatible instruction format
for native execution. In the context of composability, Solidity contracts are expected to prepare
the Solana data directly, rather than undergoing a translation process.

Furthermore, each individual instruction request to Solana passed to the precompile at ad-
dress 0xFFO0000000000000000000000000000000000006 is executed as a CPI call from the Neon
EVM program to the targeted Solana program (as specified by the programId in the instruc-
tion). This delegation ensures that the Neon EVM program acts on behalf of the original
msg.sender, securely relaying instructions and preserving the intended authority and context
throughout the execution process.

The precompile extensions handle critical operational responsibilities, including:

e Solana instruction encoding and execution via CPI: Solidity contract calls directed
toward the composability precompile (0xFF00. ..06) contain developer-formatted Solana
instruction data. The precompile interface validates this input. Subsequently, the Neon
EVM Solana program itself executes the requested operation by making a Cross-Program
Invocation (CPI) call to the target Solana program ID specified within the instruction
data. This CPI is performed by the Neon EVM program acting securely on behalf of
the original Ethereum msg.sender, effectively delegating the instruction execution within
the Solana environment. Precompiles also manage the inclusion of necessary account
metadata consistent with Solana program interfaces.

e Dynamic account discovery and management: Precompile extensions automati-
cally identify and resolve Solana accounts required for specific instructions, including
program-derived addresses (PDAs), associated token accounts (ATAs), and explicitly de-
fined accounts specified within Solidity calls. Account metadata—including ownership,
permissions, and signer authority—are managed by the precompile logic, eliminating ex-
plicit developer intervention.

e SOL provisioning via payer accounts: Many Solana operations (e.g., token account
creation, data storage initialization) require SOL for rent exemption and account creation.
Precompile extensions internally handle SOL provisioning via dedicated payer accounts
deterministically associated with the original Ethereum caller (msg.sender). Upon in-
struction execution, any unspent SOL allocations are automatically returned to the Neon
EVM operator, managing resources efficiently.

e Secure signer authorization: Certain Solana instructions require authorized signer
accounts to execute specific operations (e.g., metadata creation via Metaplex). Precompile

12

extensions manage these signer requirements through associated payer accounts, ensuring
instructions are correctly authorized without private-key exposure or additional manual
management by the contract developers.

e Atomicity and error management: Precompile extensions enforce strict atomic trans-
action semantics. Transactions invoking Solana instructions either execute fully or revert
entirely upon encountering any execution error. Developers do not explicitly handle par-
tial execution scenarios, simplifying contract logic and ensuring consistent, secure cross-
platform state transitions.

e Off-chain transaction emulation support: Precompile contracts integrate with the
off-chain Neon proxy layer, supporting pre-transaction emulation and validation processes.
This emulation includes verifying compute-unit constraints, instruction correctness, and
account accessibility, identifying errors prior to on-chain execution, and reducing execution
reverts.

5.3 Program Derived Addresses (PDAs) and ERC20ForSPL token manage-
ment

Program derived addresses (PDAs) form an essential part of Neon EVM’s internal account man-
agement, enabling deterministic, secure, and private-keyless interaction with Solana blockchain
accounts. PDAs are generated deterministically using predefined seeds, such as Ethereum con-
tract addresses or user-specific identifiers, ensuring predictable and collision-free address deriva-
tion. These accounts are exclusively managed by the Neon EVM program, thus maintaining
strict security, deterministic account management, and precise state handling.

Key functions and characteristics of PDAs in Neon EVM include:

e Deterministic account generation: PDAs are derived using deterministic methods,
typically combining Ethereum addresses, specific identifiers, and fixed seeds to produce
Solana addresses that require no private keys. This ensures secure and predictable inter-
actions without manual account management.

e Secure asset custody and isolation: PDAs securely hold and manage assets, tokens, or
data for EVM-based contracts. As no external parties hold keys to these accounts, asset
custody remains entirely secure and inaccessible except via properly authorized Neon
EVM transactions.

e Integration with Solana token accounts: Neon EVM utilizes PDAs to store SPL
token balances associated with EVM addresses. Token state changes, such as balance
transfers and approvals performed by Solidity contracts via ERC20ForSPL, directly mod-
ify the state stored within these PDA-managed Solana token accounts.

The ERC20ForSPL interface provides:

e Solana token integration: Token operations in Solidity—such as transfer (address,uint256),
transferFrom(address,address,uint256), and balanceOf (address)—are internally
executed by directly manipulating the associated Solana token account state, eliminating
redundant storage and ensuring accurate real-time token balances.

¢ Efficient token account handling via ATAs: Associated token accounts (ATAs), ex-
plicitly owned by smart contracts or user-controlled addresses, simplify token management

13

by providing direct control of tokens during composability operations. Recent improve-
ments in ERC20ForSPL enable tokens to be deposited directly into these ATAs, poten-
tially bypassing intermediate PDAs and reducing operational overhead and complexity in
certain scenarios.

e Atomic token state updates: ERC20ForSPL inherits strict atomicity provided by
Neon EVM composability transactions. Token transfers and interactions executed through
composability are performed atomically, ensuring all token state updates either commit
entirely or revert completely, maintaining state consistency and integrity.

5.4 Payer account for SOL provisioning and instruction signing

Interactions with Solana programs frequently involve account creation or initialization, which
requires payment of a specific amount of SOL to ensure accounts meet the Solana blockchain’s
rent-exemption criteria. In Neon EVM’s composability model, transactions originate from
Ethereum-compatible (EVM-based) wallets holding NEON tokens (used for gas), not neces-
sarily SOL. To bridge this gap, Neon EVM introduces a special account mechanism known as
the payer account.

The payer account has a deterministic one-to-one association with the original msg.sender—the
Ethereum address initiating the composability request. This payer account serves two primary
purposes:

e Provisioning SOL for account creation: When a smart contract requires the creation
or initialization of Solana accounts (e.g., token accounts or general data-storage accounts)
via composability, the necessary SOL for account rent-exemption must be provided up-
front. The payer account fulfills this requirement by temporarily receiving SOL from
Neon EVM operators upon request. For example, initializing a typical SPL token account
requires allocating approximately 165 bytes, corresponding to roughly 0.0016 SOL (rent
varies). During the composability instruction, the contract implicitly requests the specific
SOL amount needed for the accounts it creates, which the Neon EVM program facilitates
by transferring SOL from operators to the payer account to cover these costs.

After the transaction concludes, any unspent SOL balance allocated for rent but ultimately
not needed (e.g., if an account already existed or the transaction reverted before creation)
from the payer account is automatically returned to the Neon EVM operator. Thus,
the underlying mechanism ensures cost efficiency, avoiding excess SOL consumption or
prolonged fund storage in the payer account. The user’s cost is reflected in the NEON
gas fees covering the entire operation, including the SOL provisioning service.

e Signing instructions requiring authorization: Certain Solana program instructions
(e.g., associating SPL token metadata via Metaplex standards, or interactions requiring
the authority over an account to sign) require explicit signatures from authorized accounts.
The payer account provides this necessary authorization capability when the EVM con-
tract logic dictates it. Smart contracts may utilize the payer account as a signer for Solana
instructions whenever explicit authorization from an account associated with the origi-
nal caller (msg.sender) is mandated. The payer account thus facilitates interoperability
between EVM-compatible smart contract logic and native Solana signing requirements,
acting as a proxy signer controlled by Neon EVM on behalf of the user’s intent.

Behind the scenes, Neon EVM automatically derives and manages a unique payer account
address for each Ethereum msg. sender. Smart contracts can retrieve the Solana address of their

14

associated payer account via the getPayer () method provided by the composability precompile
contract at address 0xFFO0000000000000000000000000000000000006.

Importantly, the SOL amounts disbursed through the payer account originate from the Neon
EVM operator infrastructure, funded by the overall transaction fees paid in NEON by the
user. The initial EVM transaction signer approves NEON token spending for gas and fees
only once—during the initial transaction signing. The NEON gas limit approved strictly caps
the total resources expendable for the execution of all subsequent instructions associated with
that transaction, including the cost of SOL provisioning. It is not possible to exceed this
predetermined NEON gas limit.

5.5 Detailed composability execution and internal transaction handling

Neon EVM composability employs a detailed internal transaction handling mechanism to man-
age complex, multi-step interactions with Solana programs. This mechanism provides deter-
ministic and atomic cross-chain transaction execution.

Internal transaction scheduling and resource allocation

For transactions involving multiple dependent Solana instructions invoked via composability
calls within a single Ethereum transaction, Neon EVM manages the sequence atomically. It
evaluates the state after each instruction to potentially inform subsequent ones, all while man-
aging the overall compute budget. Figure 1 illustrates this internal sequencing.

Scheduled
NeonTx (Atomic
Context)

!

[Execute Com-
posability Call
| #1 (Solana Ix)
N
Evaluate Inter-
mediate State
(within EVM)
= J
(l N
Prepare/Update
Composability
Call #2 Data
N
Execute Com-
posability Call
L #2 (Solana Ix))

!

More Com-
posability
Calls in Tx?

Yes

No (Commit Entire
LTransaction State

Figure 1: Internal Neon transaction scheduling for sequential composability calls within one
atomic transaction

15

Error handling and atomic revert semantics

Atomicity is paramount. If any Solana instruction invoked through composability fails, or if
resource limits are exceeded, the entire transaction’s state changes on Solana (and consequently,
the perceived state in Neon EVM) are discarded. Figure 2 depicts this.

Execute NeonTx
Instructions
(incl. Compos-
ability Calls)

|

Execution
Error or
Resource

Limit Hit?

Revert All State
Changes (Solana)

Commlt Trans- Finalize &
action State Cleanup (Failure)
(Solana) P

Finalize &
Cleanup (Success)

Figure 2: Neon EVM internal error handling and atomic revert semantics

This explicit internal composability transaction-handling logic ensures deterministic and secure
execution of complex multi-step cross-chain transactions within the atomic guarantees of a single
Solana transaction.

5.6 Neon proxy and emulation layer

The Neon proxy and emulation layer acts as an essential intermediary between Ethereum-
compatible clients (like wallets or dApp frontends) and the Neon EVM on Solana. Its primary
responsibility involves transaction preprocessing, off-chain emulation, computational resource
estimation, and final transaction encoding, ensuring the feasibility and validity of Ethereum-
style transactions within Solana’s operational constraints before they are submitted for on-chain
execution.

The explicit functionality and detailed architecture of the Neon proxy and emulation layer
include:
e Transaction preprocessing and validation:

— Incoming Ethereum-compatible transactions (signed raw transactions) are initially
parsed by the Neon proxy, which validates parameters, formatting, signature, and
adherence to Neon EVM semantics.

16

— Preprocessing involves explicitly identifying the Solana accounts required for the
transaction’s execution, including those needed for composability calls, based on the
target contract and method signature.

e Off-chain execution emulation:

— The Neon proxy layer performs an off-chain simulation (emulation) of the transaction
execution using a local instance or model of the Neon EVM logic. This critical
step explicitly calculates the compute-unit (CU) consumption, predicts potential
state changes, identifies necessary account creations (and associated SOL costs), and
detects likely revert conditions *before* submitting the transaction on-chain.

— Emulation enables preemptive identification of failures due to incorrect instructions,
missing accounts, resource constraint violations (CU limit, transaction size), or in-
sufficient user balance to cover gas, reducing transaction failures and unnecessary
on-chain load.

e Compute-unit budgeting and estimation:

— Accurate estimation of computational resources (CUs) required for on-chain execu-
tion occurs explicitly during the emulation step. The proxy calculates the expected
CU usage for the EVM execution and any embedded Solana instructions from com-
posability calls, ensuring the total remains within Solana’s per-transaction budget
(1.4 million CU).

— Transactions projected to exceed computational budgets or data limits are explicitly
identified during emulation. The Neon proxy typically rejects these transactions prior
to on-chain submission, providing informative errors back to the client.

e Final transaction encoding and submission:

— Upon successful emulation and validation, the Neon proxy explicitly encodes the
original Ethereum transaction into a Solana transaction format targeting the Neon
EVM program. This involves packaging the EVM bytecode execution instructions,
necessary Solana account metadata (including PDAs, ATAs, payer accounts, program
addresses), signer authorizations, and the estimated computational resource request.

— The proxy submits this fully validated, formatted Solana transaction to the Solana
network for execution by the Neon EVM program, increasing the likelihood of suc-
cessful and predictable execution.

e Error handling and revert detection:

— Transaction emulation explicitly identifies potential errors such as insufficient funds
for gas, invalid nonces, logical instruction failures (detectable off-chain), account
initialization failures (if dependencies are known), or computational budget overruns.

— Transactions failing during emulation are typically not broadcast. Instead, the proxy
returns explicit error messages (often compatible with Ethereum RPC error stan-
dards) and computational usage details to the client, facilitating debugging and
transaction adjustment prior to resubmission.

The detailed architecture of the Neon proxy and emulation layer interaction is illustrated ex-
plicitly in Figure 3:

17

[Ethereum-

compatible Client
L (Wallet/dApp))

iSigned Eth Tx

s A Off-chain
Neon Proxy Emulation
L J & Validation

Emulation
Successful

& Valid?

No Explicit Error Re-
porting to Client

e R
Solana Transac-
tion Encoding

i

Submit to
Neon EVM (via
L Solana Network))

Figure 3: Detailed architecture of the Neon proxy and off-chain emulation layer

5.7 Gas and compute budget

Neon EVM composability transactions rely on a precise internal gas and compute-unit (CU)
budgeting mechanism to manage computational resources effectively within the constraints of
Solana’s execution environment. Solana blockchain transactions have a fixed computational
limit of approximately 1.4 million compute units per transaction block-wide (though individual
transactions may request less). Neon EVM explicitly manages its portion of this resource
through a defined budgeting model, ensuring deterministic execution outcomes relative to the
requested budget.

Detailed considerations and explicit mechanisms for gas and compute-unit budgeting include:

e Compute-unit estimation and accounting;:

— The Neon proxy’s off-chain emulation explicitly calculates the computational cost
(in CUs) of composability transactions prior to on-chain submission. This includes
estimating the CUs for EVM opcode execution and the CUs required for each Solana
instruction invoked via precompiles.

— The estimation process accounts for factors like computational complexity, instruc-
tion data size, number of accounts accessed, and potential dynamic state evaluations
occurring during execution.

e Gas to compute-unit relationship:

— Ethereum-style gas specified by the user in the transaction (gasLimit) serves as the
primary input for budgeting. Neon EVM uses this gas limit, combined with the
current gas price, to determine the maximum NEON fee the user is willing to pay.

— Internally, Neon EVM translates the complexity of the requested operations (derived
from the gas limit and emulation) into a required Solana compute-unit budget. There
isn’t a fixed public gas-to-CU conversion ratio; rather, the emulation determines the

18

necessary CU budget for the specific transaction, which must be affordable within
the NEON fee cap and below Solana’s hard limits.

— This ensures predictable resource allocation from the user’s perspective (gas limit)
while adhering to Solana’s compute-unit model.

e Dynamic execution resource management:

— During on-chain execution, the Solana runtime explicitly monitors compute-unit con-
sumption against the budget requested by the Neon EVM transaction.

— Neon EVM ensures its internal operations, including EVM execution and compos-
ability calls, stay within the requested budget. Transactions dynamically adapting
to intermediate states (e.g., conditional logic, calls dependent on prior results) have
their resource usage accounted for in real-time by the Solana runtime.

e Atomicity and budget enforcement:

— Transactions explicitly exceeding the requested Solana compute-unit budget during
on-chain execution trigger an immediate, atomic revert of the entire transaction by
the Solana runtime.

— This atomic enforcement mechanism maintains consistent and secure state transi-
tions, ensuring transactions either fully complete within the computational budget
or revert predictably without partial state changes.

e Resource budget reporting and error handling;:

— Transactions failing compute-unit budget constraints during off-chain emulation ex-
plicitly return detailed error messages (e.g., "out of gas” or equivalent) to the devel-
oper/client via the Neon Proxy.

— If a transaction passes emulation but unexpectedly hits the CU limit on-chain (per-
haps due to state changes between emulation and execution), the transaction simply
reverts atomically on Solana, and the failure status is reflected back through standard
Ethereum transaction receipt mechanisms (e.g., status 0).

— Clear feedback from emulation helps developers adjust transaction complexity or
increase the gas limit (and thus the potential NEON fee cap and requested CU
budget) prior to resubmission.

5.8 Security and validation mechanisms

Neon EVM composability incorporates robust security and validation mechanisms designed to
ensure transaction integrity, secure asset handling, isolation of execution contexts, and deter-
ministic state management across Ethereum-compatible and Solana-native interactions. These
measures protect against unauthorized access, ensure predictable behavior, and maintain the
consistency of the Neon EVM environment.

The explicitly implemented security and validation components within Neon EVM include:

e Transaction validation and pre-execution checks:

— The Neon Proxy performs rigorous off-chain transaction validation, explicitly verify-
ing Ethereum transaction formatting, signature correctness (recovering the sender’s
address), nonce sequencing, and basic checks like sufficient balance for gas costs.

19

— Pre-execution emulation explicitly validates instruction correctness (e.g., valid pre-
compile calls, sensible parameters), Solana account existence/derivability, and com-
pliance with computational resource constraints, preventing obviously invalid trans-
actions from reaching the chain.

e Operator account isolation and permission enforcement:

— Neon EVM infrastructure (including operators managing SOL for payer accounts)
is explicitly isolated from user accounts and contract execution contexts. Operator
roles are limited to facilitating resource allocation (like SOL provisioning) based on
validated requests originating from user transactions.

— Permissions within the Neon EVM program itself ensure that only authorized ac-
tions (e.g., executing EVM bytecode, interacting with precompiles, managing PDAs
derived from specific seeds) can occur, preventing arbitrary state manipulation.

e Secure signer authorization via Payer Accounts:

— Neon EVM explicitly utilizes deterministically derived, program-controlled payer ac-
counts to sign specific Solana instructions requiring authorization on behalf of the
original msg.sender.

— Since these payer accounts have no externally held private keys and are controlled
solely by the Neon EVM program logic triggered by a user’s transaction, this pro-
vides secure signing capabilities without exposing user keys or requiring complex
intermediate signing steps.

e Atomic transaction enforcement:

— Neon EVM explicitly leverages Solana’s native atomic transaction model. All opera-
tions within a single Neon EVM transaction (including EVM execution and all com-
posability calls) either succeed together or fail together, reverting all state changes
atomically.

— This eliminates risks associated with partial execution states and ensures data con-
sistency across the Ethereum (emulated) and Solana layers.

e Deterministic PDA account management:

— Program-derived addresses (PDAs) used for storing EVM state (contract code, stor-
age, nonces) and managing SPL token balances (via ERC20ForSPL) are determinis-
tically generated based on user/contract addresses and predefined seeds.

— These PDAs are exclusively controlled (’owned’) by the Neon EVM program itself,
preventing unauthorized external modification or access and ensuring predictable,
secure state management tied directly to the corresponding EVM entity.

e Error handling and state revert logic:

— Neon EVM explicitly implements robust error handling. Upon detecting transaction
errors (invalid opcode, precompile failure, resource limit violation, assertion failure),
permission issues, or security policy breaches during on-chain execution, Neon EVM
ensures the Solana runtime triggers an atomic transaction reversion.

— This securely rolls back all state changes attempted within that transaction, preserv-
ing the integrity of the blockchain state.

20

The explicit security and validation workflow employed by Neon EVM composability is illus-
trated clearly in Figure 4, highlighting checks at different stages.

Transaction
Submission
(Signed Eth Tx)

Off-chain
Validation &
Emulation
(Neon Proxy)

Tx Valid

Reject Trans-

No
& Passes action, Re-
Emulation? turn Error
Yes

Submit Solana
Tx to Neon EVM

On-chain Execu-
tion (Neon EVM)
o)

Permission
Checks &
Signer Auth
(Payer Account)

Deterministic
PDA Ac-

cess Control

%—J

Runtime
Checks -
. No Atomic Trans-
Pass (Logic,)
R action Revert
esources,

Security)?

Atomic State
Commit

Figure 4: Explicit Neon EVM security validation and execution isolation workflow

21

6 Conclusion

Composability represents a significant advancement in blockchain interoperability, providing
a unified framework for interaction between Ethereum-compatible smart contracts and native
Solana programs. By abstracting the complexities of cross-chain communication—including
disparate account models, token standards, and execution semantics—Neon EVM empowers
developers to leverage the strengths of both ecosystems: Ethereum’s mature development envi-
ronment and tooling, combined with Solana’s high throughput and low-cost execution.

This white paper has detailed the architecture, execution model, and core technical components
underpinning this functionality. Key features such as the use of specialized precompiles, the
ERC20ForSPL interface for token bridging, deterministic PDAs for secure state management,
and the innovative payer account system for SOL provisioning and signing, collectively enable
robust and efficient cross-chain operations. Furthermore, the emphasis on atomic transactions
and comprehensive security validation ensures the integrity and reliability of interactions facil-
itated by Neon EVM composability.

The mechanisms described herein offer developers a complete toolset for building complex, cross-
chain decentralized applications. As the blockchain landscape continues to evolve, solutions like
Neon EVM composability that bridge ecosystems and enhance developer capabilities will be
crucial in driving innovation and adoption across the Web3 space.

22

	Introduction
	Executive summary
	Overview of composability
	Composability technical approach

	Composability overview
	Definition and motivation
	High-level architecture
	Support for Arbitrary Solana Programs

	Composability execution model
	Conceptual overview
	Execution workflow
	Token bridging via ERC20ForSPL
	Compute unit considerations and instruction preparation
	Atomicity, error handling, and simulation considerations

	Technical details
	Neon EVM program architecture
	Precompile extensions for Solana calls
	Program Derived Addresses (PDAs) and ERC20ForSPL token management
	Payer account for SOL provisioning and instruction signing
	Detailed composability execution and internal transaction handling
	Neon proxy and emulation layer
	Gas and compute budget
	Security and validation mechanisms

	Conclusion

